Metabolic adaptation of endothelial cells to substrate deprivation.
نویسندگان
چکیده
Endothelial cells are known to be metabolically rather robust. To study the mechanisms involved, porcine aortic endothelial cells (PAEC), cultured on microcarrier beads, were perfused with glucose (10 mM) or with substrate-free medium. Substrate-free perfusion for 2 h induced an almost complete loss of nucleoside triphosphates (31P-NMR) and decreased heat flux, a measure of total energy turnover, by >90% in parallel microcalorimetric measurements. Heat flux and nucleoside triphosphates recovered after addition of glucose. Because protein synthesis is a major energy consumer in PAEC, the rate of protein synthesis was measured ([14C]leucine incorporation). Reduction or blockade of energy supply resulted in a pronounced reduction in the rate of protein synthesis (up to 80% reduction). Intracellular triglyceride stores were decreased by ∼60% after 2 h of substrate-free perfusion. Under basal perfusion conditions, PAEC released ∼30 pmol purine ⋅ mg protein-1 ⋅ min-1, i.e., 16% of the cellular ATP per hour, while ATP remained constant. Substrate deprivation increased the release of various purines and pyrimidines about threefold and also induced a twofold rise in purine de novo synthesis ([14C]formate). These results demonstrate that PAEC are capable of recovering from extended periods of substrate deprivation. They can do so by a massive downregulation of their energy expenditure, particularly protein synthesis, while at the same time using endogenous triglycerides as substrates and upregulating purine de novo synthesis to compensate for the loss of purines.
منابع مشابه
Effects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells
Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...
متن کاملEffects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells
Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nano...
متن کاملEffect of Organic Substrate on Promoting Solventogenesis in Ethanologenic Acetogene Clostridium ljungdahlii ATCC5538
Clostridium ljungdahlii is a strictly anaerobic acetogene known for its ability to ferment a wide variety of substrates to ethanol and acetate. This bacterium presents a complex anaerobic metabolism including the acetogenic and solventogenic phases. In this study, the effect of various carbon sources on triggering the metabolic shift toward solventogenesis was considered. The bacterium was grow...
متن کاملGlucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma.
The induction of proangiogenic cytokines such as vascular endothelial growth factor (VEGF) is a critical feature of tumor angiogenesis. In the present study, we examined the mechanisms of VEGF gene expression induced by glucose deprivation in cancer cells, a role of AMP-activated protein kinase (AMPK) in the process, and the signal transduction pathway. AMPK functions as an energy sensor to pro...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 276 5 شماره
صفحات -
تاریخ انتشار 1999